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A REVIEW OF THE KINETIC STATISTICAL STRENGTH MODEL

Armand V. Attia

I n t r o d u c t i o n .

This is a review of the Kinetic-Statistical Strength (KSS) model,
described in the report: "Models of Material Strength, Fracture and
Failure" by V. Kuropatenko and V. Bychenkov1.  The report covers
several approaches to material strength modeling  for simulating the
dynamic response of metals to explosive charges and the rock
response to underground explosions.   I have focussed on the
material strength models for metals subjected to high strain rates,
leaving an evaluation of rock response for later review.

This review traces the theoretical development of the KSS model,
which has been validated against two types of experiments on metal
response to shock loading: (1) rupture time vs. tensile stress, and (2)
spatial attenuation of elastic precursor peak stress.

Model Overview.

The original KSS model described by Zhurkov2 was found to apply
only to quasi-static loading.  Improvements were made by Sanin3 to
extend the model to dynamic loading.  Gornovoi4  modified the model
to describe the attenuation of the elastic precursor in the response of
metals to explosive charges.  Finally, Kuropatenko and Bychenkov1

show how to incorporate the model into an elasto-plastic stress
advance formulation.

Quasi-Static Model

In Zhurkov's model, material strength is characterized by durability
τ.  This is the time for a material sample to fail, when it is subjected
to a rectangular tensile pulse sufficiently high to reach the material
ultimate strength σ .  During a static tensile test, ultimate strength is
the maximum load divided by original sample cross-sectional area.
The quasi-static KSS model is based on an empirical relationship2

between the durability τ  and the tensile ultimate strength σ  :
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τ  = τ0  exp (U0- γσ)/kT (1)

where τ 0 is the period of thermal oscillation of atoms in a crystal
lattice, U0  is the energy of interatomic bonds, γ is the activation
volume (see below), k is Boltzmann's constant, and T is the
tempera ture .

Zhurkov5 interprets U0  as  ε*ca/α   and γ as (ca/α E)κ , where ε*  is the
breaking strain of an atomic bond,  ca is the atomic specific heat, α i s
the coefficient of thermal expansion, E is the elastic Young's modulus,
and κ is a "mechanical overload factor".

Later, Zhurkov2 identifies this factor κ as Λ/a, the ratio of a phonon8

mean free path Λ  to the atomic radius a.  It is here that Zhurkov
refers to the notion of a dilaton  .  This notion was discussed in earlier
work by Kusov7, who describes the breaking of a loaded chain of
vibrating atoms, as a result of thermally-induced negative
fluctuation in the atomic density.

A dilaton is a strained region of the atomic lattice.  The straining is
assumed to result from density fluctuations caused by spontaneously
random atomic motion, or equivalently as a result of the
superposition of elastic waves describing lattice vibrations.  The
volume vd  of a dilaton is a cylinder of height Λ  and cross-section a2.
Thus, the dilaton is the minimum volume over which phonons can
collide.  The dilaton can be an incubator for crack nucleation.  The
strained region may develop into a phonon trap, allowing phonon
energy to accumulate until this energy reaches the critical value for a
crack to nucleate.  Before the crack nucleates, interatomic bonds are
stretched for duration τ  by an amount εd=(α T/3)ln(τ/τ 0).  The dilaton
tends to be  short lived with decay lifetime τ d = Λ /c of the order of
0.1 to 1 ns, where c is the sound speed in the material.

Finally, Zhurkov2  also shows that for long durabilities (1 sec.), the
quasi-static model agrees well with experimental data (see Fig. 1),
for the temperature dependence of breaking strength for aluminum,
copper, nickel, steel, and molybdenum.
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Extension to Dynamic Model

Sanin3 recognized that Zhurkov's model applied mainly to long
durabilities, down to about 1 ms.  For shock loading, the model
needed to be extended to durabilities below 1 microsec.

Several notions were involved in making this extension.  The starting
point was the quasi-static model with the notion of a dilaton as an
incubator for crack nucleation, as discussed above.  Two
developments were required:  (1) how to apply the KSS model to
actual material sample size, obviously several orders of magnitude
bigger than the tiny dilaton, and (2) how to apply static strength data
to shock  response.  Finally, these notions were incorporated within
Zhurkov's KSS framework to complete the dynamic model.

Scale effect
For the first requirement, Sanin uses Weibull's statistical model6 for
relating strength to material sample volume. According to Weibull
(see also Timoshenko9), since the strength of brittle materials is
influenced by the presence of imperfections, we can expect that the
ultimate strength will depend on the size of the specimen, so that the
material tends to be weaker, as the specimen gets larger, since the
probability of defects then increases.  Weibull developed a statistical
model, for brittle materials, relating ultimate strength σ  to sample
volume v, so that for two samples 1 and 2:

σ 1/σ 2 = (v2/v1)1/α u (2)

where α u is determined by relating stress vs. volume at the atomic
and actual sample scales.  For this purpose, Sanin first rewrites (1) in
the form:

σ = 
ε*E
κ

 (1 - 
α k T
ε*ca

 ln 
τ
τ0

) (3)

Consider a material specimen with volume v0.  Recall that κ =  Λ/a,
where  the phonon mean free path Λ can also be viewed as an
indication of structural non-uniformities in the body for the volume
v0 .   Thus,  κ is a function of the specimen volume; i.e. κ  = κ (v0) .
Sanin now uses the definition that the dilaton has the smallest
volume over which phonons may interact.  This dilaton volume vd i s
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related to the atomic volume with the same scale of non-uniformities
as for the entire specimen volume.  In fact,  vd= Λ  a2= (Λ /a)a3 so that:

 vd= κ (v0)va (4)

Thus, if we now consider a tiny material sample of volume vd, we
must then have:

κ (vd) =1, (5)

and the local dilaton stress σd is obtained from (3) using (5).   Now,
given a material specimen of volume v0 and ultimate strength  σb, the
Weibull model relates the dilaton sample to the actual sample by:

σ b/σ d = (vd/v0)1/α u (6)

Using  (4) in (6) and rearranging gives:

(σd/σb)α u = (v0/va )/κ (v0)  (7)

But, from the inverse relation between σ  and κ  in (3):

κ (vd)/κ (v0) = σb/σd (8)

Now, using (5) in (8), solving for κ (v0), and putting this result into (7)
gives the required expression for  α u  as:

 α u= 
ln(v0/va  )
ln(σd/σb)

 -1 (9)

Having determined α u  from some subset of specimens, we then
expect that the Weibull model will correctly predict the strength of
remaining specimens.

Shock  response

Sanin addresses the second requirement, for how to apply static
strength data to shock response, by noticing an important contrast
between static and shock loading.  In static loading, the first
microcrack occurs at the site with greatest number of defects in the
site volume.   Under static test conditions, the defect grows into a
Griffith crack, which (at some critical size) will propagate with
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velocity of about 0.4 c.  Thus, for a static test, the appropriate volume
of material to consider is the entire  volume of the body under load.

In order, to describe impulsive loading  under statically equivalent
conditions, Sanin assigns the cylindrical volume of radius cτ and
height 0.4cτ  to the volume v (approximately 0.5 c3τ 3) of that part of
the body under impulsive load.  Now subdivide  the loaded part of
the body into N elementary volumes v such that during the time τ ,
they don't interact. The strength of the individual elements of such a
statistical ensemble will be determined by the population of defects
in each element.  In shock loading, as the shock sweeps across the
material,  the process of fracture within individual volumes will be
associated with multiple sites.  Thus, shock loading leads to multiple
sites for crack nucleation, while static loading leads to a single
nucleation site.

Now, from (5) and the inverse relation between σ  and κ  in (3), we
have:

κ (v) =  (v/vd)1/α u (10)

or, with the cylindrical volume of  v=0.5 c3τ 3 , we have:

κ  =  (0.5 c3τ 3/vd)1/α u (11)
Putting (11) into (3) gives:

σ = E ε* (2vd/c3τ 3)1/α u(1 - 
αkT
ε*ca

 ln 
τ
τ0

) (12)

which is valid while these cylindrical volumes v do not interact; i.e.,
while

0.5 c3τ3 < v0 (13)

where v0  is the volume of material subjected to shock loading.   Now,
when  0.5 c3τ 3 = vd, we have κ (v) = 1, and (12) determines the decay
of the local dilaton stress σd.  Then, later, when 0.5 c3τ3 = v0>>vd  ,
Equ. (12) becomes Zhurkov's quasi-static equation (1) with:

U0 =  ε*ca/α (14a)

γ = (ca/α E)(v0/vd)1/α u (14b)



6

Note that (14a-b) correspond to Zhurkov's interpretation, above.
However, Sanin has now incorporated into Zhurkov's framework the
notions of scale and time, allowing the model to be considered for
actual material samples subjected to either shock loading or quasi-
static loading, where there is now a threshold durability τ*, with the
following role.  For τ<τ*, we need the explicit time dependence for the
pertinent growing volume v and associated overload factor κ (v).  For
τ > τ*, we want a constant value for that volume, associated now with
the entire specimen, since by that time all elemental cylindrical
volumes have communicated.  This notion becomes important in
applying the KSS model to elasto-plastic stress advance, as described
below.

Sanin compares the extended model favorably with experimental
data (see Fig. 2) for dependence of durability vs. cleavage resistance
of  copper, steel, and an alloy (V95).

Attenuation of Elastic Precursor

Before describing the application of the KSS model to elasto-plastic
response, let's take a look at a new vantage point that the KSS model
provides on the roles of elastic and plastic behaviors.  Gornovoi4

adapted the dynamic model to describe the attenuation of the elastic
precursor in the response of metals to explosive charges, using:

σ e
xx=E 

1-ν
1-2ν

(vd/c3τ 3)1 /αu (ε* - 
αkT

ca
 ln (τ/τ 0)) (15)

where σ e
xx  is the amplitude of the Hugoniot elastic limit,

ν  is Poisson's ratio,  E is Young's modulus, vd is the dilaton volume, c
is the longitudinal elastic wave speed, and where  τ  is now the time
for the local lattice strain to reach the critical value ε*.  Gornovoi thus
describes the effect of this local plastic deformation on the Hugoniot
elastic limit.  The formation of a plastic region can be seen as starting
with  the accumulation of elastic energy into a dilaton (i.e. phonon
pumping) and finally releasing this accumulated energy when bonds
are broken.

Gornovoi compares this model with experimental data (see Fig. 3),
obtaining good agreement for the spatial attenuation of elastic
precursor stress in metal wedges subjected to explosive charges, for
steel, titanium BT1-00, and its alloy BT3-1.
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Elasto-Plastic Stress Advance

The incorporation of the KSS model into an algorithm for the SPRUT
code to describe the elasto-plastic advance of stress deviators is
developed by further modifying the theoretical formulation.  In
summary, Sanin's KSS model is "generalized" (see Eq. (3.9) in
Reference 1), and a KSS-based flow rule (see Eq. (3.15) in Reference
1) is obtained, within the context of Prantl-Reiss relations, where the
yield surface is allowed to change with time.  Then, the "generalized"
KSS model is rewritten into a "relaxation" form (see Eq. (7.1) in
Reference 1), in which breaking strain ε* is replaced with a
corresponding form using the dynamic yield strength Y.  Finally, the
"relaxation" form is implemented in the SPRUT code  (see Section 5.2,
Step 7.3, in Reference 1).

"Generalized" model

The generalized  KSS model takes the form:

ln (τ/τ 0) = (T*/T0) (ε*-k(σ/M) (τ/τ 0)β) for  τ  ≤ τ* (16a)

ln (τ/τ 0) = (T*/T0) (ε*-k(σ/M) (τ∗/τ 0)β) for  τ > τ* (16b)

The coefficient k =  (cl  τ 0/ v1 / 3
a )β , cl  is the longitudinal sound speed,

and β = 3/α u.  The temperature T* = cp/α R; T0 is not defined, but it is
probably the temperature associated with the quasi-static
(isothermal) measurements of the strength σ .  A non-linear relation
is obtained for the durability τ* across the static/dynamic regimes, so
that given tensile strength σ0 and yield strength Y0, from static tests,
τ* is given respectively by :

ln (τ∗/τ 0) = (T*/T0) (ε*-k(σ0/M01) (τ∗/τ 0)β) (17a)

ln (τ∗/τ 0) = (T*/T0) (ε*-k(Y0/M02) (τ∗/τ 0)β) (17b)

where the associated moduli are given by  M0 1= K+(4/3)µ and  M02=
2µ ,  K is the bulk modulus, and µ  is the shear modulus.

In order to obtain a flow rule, from this  "generalized"  KSS model, a
non-linear relaxation relation between stress and durability is
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derived by differentiating (16a) or (16b), for fixed temperature  T ,
critical strain ε=ε* , and modulus M, giving:

dσ/dτ  = - β* σ/τ (18)

where σ  is peak tensile strength, in the case of tensile failure, and σ
is proportional to the second invariant of stress deviators, for shear
failure, and where β* is determined by:

β*= β +  
1

(εT*/T    -   ln ( τ / τ 0) )  
   for  τ  ≤ τ*  (19a)

β*=  
1

(εT*/T    -   ln ( τ / τ 0) )  
   for  τ > τ* (19b)

A flow rule, similar to the Prandtl-Reiss relation, is now obtained in
the form:

dSij/dt = 2µeij - (β*/τ )Sij + ωi k Skj + ωjk Ski (20)

where eij is the deviatoric strain rate, Sij is the deviatoric stress,
ωij  is the anti-symmetric part of the velocity gradient, and µ is the
shear modulus.

"Relaxed" model

The "generalized" KSS model (16a-b) is rewritten into a "relaxation"
form, in which breaking strain ε* is replaced with a corresponding
form using the dynamic yield strength Y, giving:

2µ(T/T**) ln(τ /τ0) = Y  (τ∗ /τ0)β  - J (τ '/τ0)β (21)

where  τ '= τ    if  τ  ≤ τ∗ , and  τ '= τ* if   τ  > τ∗ ,  and where
T** = (cp/αR)(cl t0/va

1/3)β , t0  is the current problem time, cl  is the
sound speed, J = (1.5 SijSij)1/2, and Sij are the stress deviators.  The
intent of this model is to prescribe the tendency of the stress
deviators to relax toward a dynamic yield limit, which is defined
only when τ  > τ∗.   Then, the dynamic yield limit is calculated by
solving (21) for Y, where J is now the measured quasi-static yield
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limit.  Otherwise, if τ  ≤  τ∗ ,  there is no constraint on the elastically
advanced stress deviators.

SPRUT implementation

Given Jn+1  for the elastically advanced stress deviator  Sn + 1
i j , and

(assuming that Y =Yn), Equ. (21) is solved iteratively for the
relaxation time τ n+1 .   A new yield limit Yn+1  is then determined to
be  J( τn+1 + ∆ t0), using (21) with Y =Yn, where ∆ t0  is a fraction of the
current  time step.   If Yn+1 > Jn+1, no deviator adjustment is
necessary.  Otherwise,

∆Sij=Sn+1
i j  (Yn+1/Jn+1 -1) (22)

Conclus ion

This completes a review of the Kinetic Statistical Strength model.
Model implementation appears to be possible in a hydrocode.
Applying the model to the shock response of metals will require a
data source for the Weibull parameter α u , short of measuring the
strength of specimens of various sizes.  Model validation will require
more details on the experiments successfully calculated by SPRUT.
Beyond validation, we need to evaluate the KSS model against other
existing rate-dependent models for metals such as the Steinberg-
Lund model1 0, or the MTS1 1 model, on other shock experiments.
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